Bayesian factor models for multivariate categorical data obtained from questionnaires
نویسندگان
چکیده
منابع مشابه
Simplex Factor Models for Multivariate Unordered Categorical Data.
Gaussian latent factor models are routinely used for modeling of dependence in continuous, binary, and ordered categorical data. For unordered categorical variables, Gaussian latent factor models lead to challenging computation and complex modeling structures. As an alternative, we propose a novel class of simplex factor models. In the single-factor case, the model treats the different categori...
متن کاملBayesian Simultaneous Edit and Imputation for Multivariate Categorical Data
In categorical data, it is typically the case that some combinations of variables are theoretically impossible, such as a three year old child who is married or a man who is pregnant. In practice, however, reported values often include such structural zeros due to, for example, respondent mistakes or data processing errors. To purge data of such errors, many statistical organizations use a proc...
متن کاملBayesian Graphical Models for Multivariate Functional Data
Graphical models express conditional independence relationships among variables. Although methods for vector-valued data are well established, functional data graphical models remain underdeveloped. By functional data, we refer to data that are realizations of random functions varying over a continuum (e.g., images, signals). We introduce a notion of conditional independence between random func...
متن کاملMultilevel Bayesian Models of Categorical Data Annotation
Abstract This paper demonstrates the utility of multilevel Bayesian models of data annotation for classifiers (also known as coding or rating). The observable data is the set of categorizations of items by annotators (also known as raters or coders) from which data may be missing at random or may be replicated (that is, it handles fixed panel and varying panel designs). Estimated model paramete...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Applied Statistics
سال: 2020
ISSN: 0266-4763,1360-0532
DOI: 10.1080/02664763.2020.1796935